博客
关于我
计算几何小结:叉积
阅读量:261 次
发布时间:2019-03-01

本文共 453 字,大约阅读时间需要 1 分钟。

一个神奇的东西,可以判断两线段是否相交,三点共线,多边形角形面积……

code:

double multi(point p1,point p2,point p0){    double x1=p1.x-p0.x,x2=p2.x-p0.x;    double y1=p1.y-p0.y,y2=p2.y-p0.y;    return x1*y2-x2*y1;}
第一次看到简直一脸懵逼,什么鬼?

首先我们考虑p0是原点的情况。

当x1=x2时如果p1要顺时针旋转到p2,则他们的叉积小于0,否则大于0。

如果x1,x2变化,也容易证明,叉积依然小于0.

在其他象限也有这样的规律。

所以叉积的正负分别代表p1逆/顺时针得到p2

关于第三个参数p0,我感性的理解为以他为旋转中心。

那么问题来了,假如p1,p2,p0三点共线,那叉积是多少。

简单的猜想:0

why

我认为可以从叉积的几何意义理解。

 叉积的绝对值除二就是那三个点组成的三角形的面积!

可以将图画出来,用割补法求,最后化简出来就是叉积的式子了。

你可能感兴趣的文章
Nancy之基于Nancy.Hosting.Aspnet的小Demo
查看>>
NAND NOR FLASH闪存产品概述
查看>>
nano 编辑
查看>>
nanoGPT 教程:从零开始训练语言模型
查看>>
NASA网站曝严重漏洞,或将沦为黑客钓鱼网站?
查看>>
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
NAS服务器有哪些优势
查看>>
NAT PAT故障排除实战指南:从原理到技巧的深度探索
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>
NativeWindow_01
查看>>
Native方式运行Fabric(非Docker方式)
查看>>
Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
查看>>